
COMPLEXITY THEORY 



PROGRAMME 

 Graph coloring: a practical application 

  This problem will serve as our touchstone throughout the  

  lecture as we attempt to ground our discussion of complexity theory. 

 Key concepts and terms: 

  Polynomial runtime, decision problem, determinism, and reducibility 

 Introduction to problem classes: 

  P, NP, and NP-Complete 

 Implications and further considerations 



THE MAP COLORING PROBLEM 

The Question: 

What is the minimum number of colors 

necessary to color this map so that no 

two bordering countries share the 

same color? 

One Approach: 

Model the map using a graph in a way 

that allows us to find the answer to this 

question by finding the chromatic 

number1 of the graph. 

1 Recall: the chromatic number of G, C(G), is the 

minimum number of colors needed to ensure that 

no two adjacent vertices in G have the same color. 

So how can we do this? 

Now we can proceed to find C(G). 



THE MAP COLORING PROBLEM 

Now that we have our graph: 

 Is G 2-colorable? 3-colorable? 4-colorable? 

 What is its min or max degree? 

 Does it have an embedded Kc (complete 

graph on c vertices)? 

 How do we determine these questions 

(e.g., whether a graph is 3-, 4-, or K-

colorable)? What is the algorithm? 

 How efficient of an algorithm can we 

discover to answer these questions? 

 How might we begin our inquiry? 

For arbitrary graphs, even the most efficient algorithms for determining 

three- or four-colorability (and beyond) essentially come down to this: 

Try a LOT of combinations! 

It turns out that C(G) = 4 



K-COLORING AND ITS COMPLEXITY 

 A perfectly valid (although inefficient) approach: try all possible colorings! 

 For a graph with n vertices, and a palette of some number k of colors, 

how many possible colorings (valid or not) are there? 

 Answer: kn 

 This doesn’t seem like an efficient approach! It’s certainly not polynomial. 

 Definition 1.  An algorithm has polynomial runtime if that runtime can be 

expressed as O(nk) for some constant k, where n is the input size. 

 So these are polynomial runtimes: 

 T(n) = n10 + 3n5 + 60 

 T(n) = n log n 

 But these are not: 

 T(n) = n! + n 

 T(n) = 2n + 4n2 + 12 



WHY HATE ON NON-POLYNOMIAL RUNTIMES? 

n n2 n3 n10 2n n! nn 

1 hr 3.6 x 1015 6.0 x 107 1.5 x 105 35 51 17 13 

10 hrs 

(~1/2 day) 
3.6 x 1016 1.8 x 108 3.3 x 105 45 54 18 14 

100 hrs 

(~ 4 days) 
3.6 x 1017 6.0 x 108 7.1 x 105 56 58 19 14 

1,000 hrs 

(~ 1 month) 
3.6 x 1018 1.8 x 109 1.5 x 106 71 61 20 15 

10,000 hrs 

(~ 1 year) 
3.6 x 1019 6.0 x 109 3.3 x 106 90 64 20 16 

100,000 hrs 

(~ 1 decade) 
3.6 x 1020 1.8 x 1010 7.1 x 106 113 68 21 16 

An estimate of the size of input that can be handled in the given time for an algorithm of 

the given order. These values will of course evolve as processing power increases. 

Taken from Johnsonbaugh and Schaefer’s 2004 textbook, Algorithms (Prentice Hall). 



TOWARD THE STUDY OF COMPLEXITY 

 But some problems just don’t seem to be willing to yield solutions 

(algorithms) that run in polynomial time (e.g., the graph coloring problem.) 

 So people started asking... 

 Why can’t we seem to find polynomial solutions to certain problems? 

 What are the best algorithms we can come up with to solve them? 

 What are some of the properties shared by these problems? 

 To enable this inquiry, theoreticians began dividing problems into classes. 

 And so complexity theory arrived on the scene. But before we dive in... 



A PRELIMINARY DEFINITION 

 Definition 2.  A decision problem is a question (or problem) for which all 

instances of the problem (or inputs) have either a yes or no answer. 

 Examples: 

 Is a given graph 4-colorable? 

 Does a string A contain a string B as a substring? 

 Is a set Y a proper subset of a set Z? 

 Note that many problems can be massaged into the form of a decision 

problem. For example, instead of asking for the chromatic number of a 

graph, we might instead ask whether it is k-colorable for the integer k. 

 Questions that compute values, rather than making yes or no decisions, 

are called function problems. (This is tangential to our discussion, though.) 



THE FIRST AND MOST OBVIOUS CLASS 

 Definition 3.  P is the class of decision problems that can be decided 

(solved) in polynomial time. 

 Examples: 

 Is an array X in sorted order? 

 In a sorted array of integers A, are there two integers that sum to a target T? 

 Is a given graph G two-colorable? 

 But we already have solutions with polynomial runtimes for the problems 

in P, and so they aren’t all that interesting to us in the context of the 

current discussion. 

 Before we can move on to the next class of problems... 



AN INTERLUDE ON THE TOPIC OF DETERMINISM 

 Definition 4.  A process is said to be deterministic if, given the same 

input, it always produces the same output, and passes through the same 

states in order to arrive at that output. 

 Example: Consider a simple program that you may have written in your 

first programming course: it asks for two integer inputs, prints the sum of 

those integers, and terminates. 

 The program always follows a prescribed recipe; it never deviates from 

the plan. Furthermore, given the same two integers, it always produces 

the same output (barring a hardware error or other strange glitch). 

 We might observe that it’s difficult to conceive of a non-deterministic 

program in our traditional model of computation. 



APPROACHING NON-DETERMINISM 

 Question: Is a program that prints n random integers to the screen (where 

n is some integer input by the user) deterministic or not? 

 Answer: Yes. And no. Really, it depends. 

 If you can write a program that truly produces random numbers, then the 

program will indeed be non-deterministic. 

 Most programs do not exhibit any sort of truly random behavior. The 

appearance of random behavior comes from a pseudo-random number 

generator, which is actually a deterministic process. Given the same seed 

(typically the current time), it will always produce the same sequence of 

“random” numbers as a result. 

 Here’s the rub: that seed, the current time, is implicitly part of the input to 

the system. So yes, the output is changing each time the program is 

executed, but so is the input. 



WHERE’S THE NON-DETERMINISM? 

 It’s certainly not on our computers. 

 Any truly random behavior (does it exist?) would be non-deterministic. 

 We can conceive of abstract functions that behave non-deterministically. 

 Example: Let us return to the problem of determining whether a graph is 

k-colorable. Imagine a function that could go to each vertex and guess 

(following no discernible process) what color each vertex should get. Also 

suppose that it always guesses right, and that it can do so in constant 

time. Then certainly, this function is non-deterministic! 

 Is the mind a deterministic machine? (Or rather, “machine.”) 

  The 0-1 thought experiment 



CLASSES OF PROBLEMS AGAIN 

 Definition 3a.  P is the class of decision problems that can be decided 

(solved) deterministically in polynomial time. (I left out that detail before.) 

 Definition 5.  NP is the class of decision problems that can be decided 

non-deterministically in polynomial time, and for which a solution can be 

verified deterministically in polynomial time. 

 Example: 3-Colorable Problem 

 The two parts of Definition 5 are actually equivalent, but this is beyond the 

scope of our discussion. 

 Algorithm: for each vertex v 

     color[v] = guess{1..k} 

for each vertex v 

     for ever other vertex w 

          if (v is adjacent to w) and (color[v] == color[w]) 

               return false 

return true 



PROBLEM REDUCIBILITY 

 Definition 6.  The decision problem A is reducible to the decision problem 

B if there is some function f (a deterministic polynomial time algorithm) that 

transforms instances of A into instances of B; and furthermore, if f(a) = b, 

then the answer to b is yes if and only if the answer to a is yes (where a is 

an instance of A, and b is an instance of B). 

 This is a lot less intimidating than it looks. In other words, we transform 

the question to allow ourselves to ask a different question. 

 A very loose analogy: recall how in the first few slides we transformed a map 

into a graph and re-formed the question to ask whether G was k-colorable. 

 Since we can transform instances of A into instances of B, then if we can 

solve B, we have essentially solved A. Thus, we tend to say that B is at 

least as hard as A. 

 These reductions can get very complex, and are beyond the scope of this 

discussion. The important thing to take away here is the concept. 



A FINAL CLASS OF PROBLEMS 

 Definition 7.  NP-Complete is the class of decision problems that are 

complete for NP. That is, for a problem X to be NP-Complete: 

 Examples of NP-Complete problems: 

 3-Coloring Problem 

 Traveling Salesman Problem 

 Hamiltonian Cycle Problem 

 X must be in NP 

 Every problem in NP is reducible to X 

 Or in other words: 

 The problems in NP-Complete are all NP 

 Every problem in NP is reducible to every problem in NP-Complete 

 Other classes exist that you might be interested to investigate, although 

we do not have time to discuss them here: 

 NP-Hard, Co-NP, Co-NP-Complete, EXP, and many more 



IMPLICATIONS AND DISCUSSION 

 What if we found a polynomial runtime solution to a problem in NP?  

 What if we found a polynomial solution to an NP-Complete problem? 

 Then we would have P = NP. (Why?) 

 Note that sometimes a minor change in the specification of a problem can 

send it to another class altogether. 

 Example: The 2-colorable problem is in P, but the 3-colorable problem is in 

fact NP-Complete. 

 What are the chances that P = NP? 

 Because so many brilliant people have spent so much time trying to discover 

polynomial run-time algorithms for these problems and been unsuccessful, 

many people believe that P is NOT equal to NP. 

 If you encounter a problem from NP in the real world, you shouldn’t get 

too down on yourself for not being able to find a polynomial solution to it. 

 Then we simply reassign it to P 



THE TAKE-AWAY FROM TODAY’S LECTURE 

 P is the class of problems with known solutions that run deterministically 

in polynomial time. 

 NP is the class of problems ... 

 NP-Complete is the class of problems ... 

 We’re not sure if P = NP. 

 If any single NP-Complete problem has a deterministic polynomial time 

solution, then certainly, P = NP. 

 Can you remember some examples of problems in each of these 

classes? 

 Do you recall the definitions of polynomial runtime, decision problem, 

determinism, and reducibility? 

 If you know that a problem is in P, what can you say about it? What about 

a problem in NP? NP-Complete? 


